Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 01.01

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

Wartebereich: Containerstellplatz für ca. zwei LKW (ca. 28 t Tierlebendmasse) Betäubungsanlage und Anhängebereich: Durchsatz 490 t/d Tierlebendmasse

2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Menge des Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge	Zusammenset	zung ⁽¹⁹⁾ Anteil (z. B. Gew.%, mg/l) (Maximalwert)
		(z. B. kg)		

1	Angelieferte Tiere	117.000 t/a	
3.1	Zuluft	Max. 153.248 m³/h	
4.1	CO2	540 t/a	
5.1	O2	50 t/a	

Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Menge des Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max.	Zusammenset	zung ⁽¹⁹⁾ Anteil (z. B. Gew.%, mg/l) (Maximalwert)
		Lagermenge		
		(z. B. kg)		

	T			
1a	Betäubte Tiere	116.880 t/a		
2.1	Verendete Tiere	120 t/a		
3.1a	Abluft Lebendtieran-	Max. 153.248		
	nahme	m³/h		
				
7				
			L	

Dieses Formular ist für jede Betriebseinheit auszufüllen.

- Betriebseinheit Nr.: 01.02
 Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):
 Schlachtgeschwindigkeit 16.500 Stück/h, 490 t/d
- 2. Gehandhabte Stoffe auf der Einsatzseite (16): (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab-	Menge des Stoffes pro Zeiteinheit (18)	Zusammenset	zung ⁽¹⁹⁾ Anteil (z. B.
	fallschlüssel (17)	(z. B. kg/h, m³/h)	midicostone	Gew.%, mg/l)
		bzw. max.		(Maximalwert)
		Lagermenge		
		(z. B. kg)		

1a	betäubte Tiere	116.880 t/a	
3.2	Zuluft Schlachtung	Max. 52.307 m³/h	

Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Menge des Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max.	Zusammenset	zung ⁽¹⁹⁾ Anteil (z. B. Gew.%, mg/l) (Maximalwert)
		Lagermenge		
		(z. B. kg)		

8	Geschlachtete Tiere	108.560 t/a	
2.2	Verworfene Schlacht- körper	1.100 t/a	
3.2a	Abluft Schlachtung	Max. 52.307 m³/h	
6	Blut	3.500 t/a	
7	Federn	3.720 t/a + "Transportwas- ser"	

Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 01.03

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

Leistung der Bratfertiglinie: 16.500 Stück/h

2. Gehandhabte Stoffe auf der Einsatzseite (16): (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des	Zusammenset	zung ⁽¹⁹⁾
Fließbild	bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max.	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
		Lagermenge (z. B. kg)		,

8	geschlachtete Tiere	108.560 t/a		
3.3	Zuluft Bratfertigbe-	Max. 44.451		
	reich	m³/h		
33113111				
			-	
81-1133-2				
-				

Stoffstrom	Bezeichnung des	Menge des	Zusammenset	zung ⁽¹⁹⁾
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
0.4	No. 1.			
9.1	Nicht essb. Neben- produkte Kat. 3	23.440 t/a		
10.1	Essbare Nebenpro- dukte (Hälse, Magen, Herz, Leber)	3.260 t/a		
11	Ausgenommene Schlachtkörper	81 860 t/a		
3.2a	Abluft Bratfertigbe- reich	Max. 44.451 m³/h		
			-	

Zusammensetzung (19)

Technische Daten

Dieses Formular ist für jede Betriebseinheit auszufüllen.

Bezeichnung des

1. Betriebseinheit Nr.: 01.04

Stoffstrom

- Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):
- Durchsatz 16.500 Schlachtkörper je Stunde sowie essbarer Nebenprodukte
- 2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Menge des

Nr. gemäß Fließbild	Stoffes / Gemisches	0100000		
THEISDING	bei Abfällen auch Ab- fallschlüssel ⁽¹⁷⁾	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
	Essbare Nebenpro- dukte (Hälse, Magen, Herz, Leber)	3.260 t/a t/a		
	Ausgenommene Schlachtkörper	81.860 t/a		

Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des	Zusammense	etzung (19)
Fließbild	bei Abfällen auch Ab- fallschlüssel (17)	bei Abfällen auch Ab- Zeiteinheit (18)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
10.1	Essbare Nebenpro- dukte (Hälse, Magen, Herz, Leber), gekühlt	3.260 t/a		
11	Ausgenommene Schlachtkörper, ge- kühlt	81 860 t/a		
	,		~	
		,		
			·	

Dieses Formular ist für jede Betriebseinheit auszufüllen.

- 1. Betriebseinheit Nr.: 01.05
 - Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):
 - Zerlegung von 16.500 Schlachtkörpern je h und deren Verpackung
- 2. Gehandhabte Stoffe auf der Einsatzseite (16): (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

		,		
Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Menge des Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Zusammenset	zung ⁽¹⁹⁾ Anteil (z. B. Gew.%, mg/l) (Maximalwert)
10.1	Essbare Nebenpro-	3.260 t/a t/a		

10.1				
10.1	Essbare Nebenpro-	3.260 t/a t/a		
	dukte (Hälse, Magen,			
	Herz, Leber), gekühlt			
11	Ausgenommene	81.860 t/a		
	Schlachtkörper, ge-			
	kühlt			
4.2	Kohlendioxid	60 t/a	CO2	100
5.2	Sauerstoff	5 t/a	O2	100
14	Stickstoff	10 t/a	N2	100
15	Verpackungen	2.800 t/a	Papier, Folie	90 / 10
-				
,				

Stoffstrom	Bezeichnung des	Menge des	Zusammensetzung (19)	
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit ⁽¹⁸⁾ (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
	Γ			
9.2	Nicht essbare Neben- produkte, Kat 3	230 t/a		
10.1	Essbare Nebenpro- dukte (Hälse, Magen, Herz, Leber), gekühlt	3.260 t/a		
10.2	Essbare Nebenpro- dukte (Spitzen, Rü- cken, Sterze)	9.000 t/a		
12	Griller	10.230 t/a		
13	Produkte (Schenkel, Brustkappen, Filet, Flügel)	62.400 t/a		
16	Verpackungsabfall Pappe ASN 15 01 01	55 t/a		
17	Verpackungsabfall Kunststoff ASN 15 01 02	5 t/a		
18	Gewerblicher Abfall ASN 15 01 06	270 t/a		

Dieses Formular ist für jede Betriebseinheit auszufüllen.

- Betriebseinheit Nr.: 01.06
 Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):
 Versandlager
- 2. Gehandhabte Stoffe auf der Einsatzseite (16): (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Zusammensetzung (19)	
Fließbild	bei Abfällen auch Ab- fallschlüssel (17)		Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
10.1	Essbare Nebenpro-	3.260 t/a		
10.1	dukte (Hälse, Magen, Herz, Leber), gekühlt	3.200 (/a		
10.2	Essbare Nebenpro- dukte (Spitzen, Rü- cken, Sterze)	9.000 t/a		
12	Griller	10.230 t/a		
13	Produkte (Schenkel, Brustkappen, Filet, Flügel)	62.400 t/a		
	,			

3. Produktseite (20): (Produkte, Zwischen- und Nebenprodukte, in das Abwassersystem

Stoffstrom	Bezeichnung des	Menge des	Zusammensetzung (19)	
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
10a	Eschara Nahanna	12 200 1/-		
10a	Essbare Nebenpro- dukte (10.1 + 10.2)	12.260 t/a		
12a	Griller	10.230 t/a		
13a	Produkte (Schenkel, Brustkappen, Filet, Flügel)	62.400 t/a		

Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 01.07

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

Bluttank: 40 m³

- 2 Auflieger für Federn (je 40 m³)
- 2 Auflieger für Kat 3 (je 40 m³)
- 1 Wechselcontainer für Kat 2 (20 m³):
- 2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des	Zusammenset	zung ⁽¹⁹⁾
Fließbild	bei Abfällen auch Ab-	Stoffes pro Zeiteinheit ⁽¹⁸⁾	Inhaltsstoffe	Anteil (z. B.
	fallschlüssel ⁽¹⁷⁾	(z. B. kg/h, m³/h) bzw. max.		Gew.%, mg/l) (Maximalwert)
		Lagermenge (z. B. kg)		

2.1	Vorandata Tiere	100 #-
	Verendete Tiere	120 t/a
2.2	Verworfene Schlacht-	1.100 t/a
	körper	
3.4	Zuluft SNP-Lagerung	Max. 11.727
		m³/h
6	Blut	3.500 t/a
7	Federn	3.720 t/a +
		Transportwas-
		ser
9.1	nicht essb. Neben-	23.440 t/a
	produkte, Kat 3	
9.2	nicht essb. Neben-	230 t/a
	produkte, Kat 3	

	T			
Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des	Zusammense	tzung ⁽¹⁹⁾
Fließbild bei Abfällen au	bei Abfällen auch Abfallschlüssel (17)	ällen auch Ab- Zeiteinheit (18)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
	I			
2a	Nicht essbare Neben- produkte, Kat 2 (2.1 + 2.2)	1.220 t/a		
3.4a	Abluft SNP-Samm- lung	Max. 11.727 m³/h		
6a	Blut	3.500 t/a		
7a	Federn einschl. ver- bleibendes anhaften- den Wassers	5.200 t/a		
9a	nicht essbare Neben- produkte, Kat 3 (9.1 +9.2)	23.670 t/a		
19.1	Abgepresstes Wasser aus Federntransport (Umlauf)	n. b.		

Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 01.08

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

Kläranlage Produktionsabwasser:

Abwassermenge, Zulauf: 1.020 m³/d Umkehrosmoseanlage: Zulauf: 400 m³/d

Kläranlage Sozialabwasser: ausgelegt auf 250 EGW

2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstr Nr. gen		Bezeichnung des Stoffes / Gemisches	Menge des Stoffes pro	Zusammenset	zung ⁽¹⁹⁾
Fließb	oild	bei Abfällen auch Ab- fallschlüssel (17)	Zeiteinheit ⁽¹⁸⁾ (z. B. kg/h, m³/h)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l)
			bzw. max.		(Maximalwert)
			Lagermenge		
			(z. B. kg)		

19.1b	Abwasser aus Produktion	208.000 m³/a	
19.2a	Abwasser aus Sozial- bereich	10.500 t/a	
19.3a	Abwasser aus Abluft- reinigungsanlagen	1.450 m³/h	
20	Chemikalien	90 t/a	

Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab-	Menge des Stoffes pro Zeiteinheit (18)	Zusammenset	Anteil (z. B.
	fallschlüssel ⁽¹⁷⁾	(z. B. kg/h, m³/h) bzw. max.		Gew.%, mg/l) (Maximalwert)
		Lagermenge		(**************************************
		(z. B. kg)		

19a	Gereinigtes Sozialab-	10.500 m³/a	
	wasser		
21.1	Filtrat zu BE 01.09	1.450 m³/a	
21.2	Ger. Abwasser in	139.500 m³/a	
	Vorfluter		
22	Permeat in BE 01.01,	78.000 m³/a	
	01.02		
23	Siebreste	500 t/a	
	ASN 02 02 03		
24	Flotatschlamm	5.500 t/a	
	ASN 02 02 02		
25	Belebtschlamm	600 t/a	
	ASN 02 02 04		
26	Siebgut KKA	10 m³/a	
07	ASN 19 08 01		
27	Klärschlamm ASN 19 08 05	100 m³/a	
3.5a		40.000 3/1-	
3.5a	Abluft Kläranlage	13.680 m³/h	
		L	

Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 01.09

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

Zuluftanlage 1: Schlachthof Schwarzbereich Zuluftanlage 2: Schlachthof Weißbereich

Zuluftanlage 3:

ARA 1: Biofilter für geruchsintensive Abluft Kläranlage: ausgelegt auf 13.680 m³/h

ARA 2: Biowäscher für geruchsintensive Abluft Schlachthof: ausgelegt auf 262.035 m³/h

Reingasqualität jeweils: kein Rohgasgeruch im Reingas, 500 GE/m³

2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

	and zwiedlenprodukte,	/ (blalle)		
Stoffstrom	Bezeichnung des	Menge des Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Zusammensetzung (19)	
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)		Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
3.1a	Abluft aus Lebend- tierannahme	max. 153.248 m³/h		
2.2-	Alaliuft area Calala ala	FO 007		

3.1a	Abluft aus Lebend-	max. 153.248	
	tierannahme	m³/h	
3.2a	Abluft aus Schlach-	max. 52.307	
	tung	m³/h	
3.3a	Abluft aus Bratfertig-	max. 44.248	
	bereich	m³/h	
3.4a	Abluft aus SNP-	max. 11.727	
	Sammlung	m³/h	
3.5a	Abluft aus Kläranlage	max. 13.680	
		m³/h	
21.1	Filtrat	1.450 m³/a	
28	Chemikalien für ARA	2 m³/a	
	2		
, 23			

Stoffstrom	Bezeichnung des	Menge des	Zusammenset	nsetzung ⁽¹⁹⁾
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
3.1	7. d. st find about the	450.040		
3.1	Zuluft für Lebendtier- annahme 1	max. 153.248 m³/h		
3.2	Zuluft für Schlachtung	max. 52.307 m³/h		
3.3	Zuluft für Bratfertigbe- reich	max. 44.451 m³/h		
3.4	Zuluft für SNP- Sammlung	max. 11.727 m³/h		
19.3a	Abwasser von ARA	1.450 m³/a		
3a1	Gereinigte Abluft ARA 1	13.680 m³/h		
3a2	Gereinigte Abluft ARA 2	max. 262.035 m³/h		
		_		

Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 01.10

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

E-Energieversorgung, bestehend aus 7 Trafostationen sowie Mittelspannungsverteilung Drucklufterzeugung, bestehend aus einem Verbund von Schraubenkompressoren Trinkwasserversorgung, bestehend aus dem Anschluss an das öffentliche Netz: Wärmeversorgung, bestehend aus mehreren WRG, Wärmebezug aus BHKW, Wärmeerzeuger auf Basis Biogas/Flüssiggas als Redundanz bzw. Heizöl für QS-Bereich Betriebstankstelle, Werkstatt, Gefahrstoffläger

2. Gehandhabte Stoffe auf der Einsatzseite (16): (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom	Bezeichnung des	Menge des	Zusammenset	zung ⁽¹⁹⁾
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l)
		bzw. max. Lagermenge		(Maximalwert)
		(z. B. kg)		

19	Trinkwasser	180.000 m³/a	
29.1	E-Energie	10.000 MWh/a	
29.1	E-Energie aus PV	550 MWh/a	
30.1	Abwärme aus BHKW	3.300 MWh/a	
30.2	Wärme aus WRG	300 MWh/a	
31a	Flüssiggas/Biogas	30 MWh/a	
33	Diesel	860.000 l/a	
34	Adblue	30.000 l/a	
35	Heizöl	10.000 l/a	
36	Gefahrstoffe Technik-	4 t/a	
	bereich		

		·		
Stoffstrom	Bezeichnung des	Menge des	Zusammenset	zung ⁽¹⁹⁾
Nr. gemäß Fließbild	Fließbild bei Abfällen auch Ab- Zeiteinheit (18)	Lagermenge	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
19.1	Wasser für Produk- tion	169.500 m³/a		
19.2	Wasser für Sozialbe- reich	10.500 m³/a		
29a	E-Energie	10.550 MWh/a		
30a	Wärme/Warmwasser			
32	Verbrennungsabgase der Brenner		,	
37	Druckluft/Vakuum			

Dieses Formular ist für jede Betriebseinheit auszufüllen.

- 1. Betriebseinheit Nr.: 01.11 Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):
 - Sozialbereiche für Schwarzbereich, für Weißbereich Produktion, für Versand und für Verwaltung
- 2. Gehandhabte Stoffe auf der Einsatzseite (16): (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom Bezeichnung des Nr. gemäß Stoffes / Gemisches		Menge des	Zusammensetzung (19)	
Fließbild bei Abfällen auch Abfallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)	
19.2	Trinkwasser	10.500 m³/a		
Für alle BE:				
40	Reinigungsmittel	140 m³/a		
-				

Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des	Zusammenset	zung ⁽¹⁹⁾
Fließbild	The state of the s	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)	
10.0				
19.2a	Abwasser aus Sozial- bereich	10.500 m³/a		
		*		

Dieses Formular ist für jede Betriebseinheit auszufüllen.

1. Betriebseinheit Nr.: 02.01

Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):

Kälteanlage 1 im Logistiklager (NH3-Füllmenge 2,85 t)

Kälteanlage 2 in neuer Technikzentrale (NH3-Füllmenenge 12,15 t)

2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom	Bezeichnung des	Menge des	Zusammenset	zung ⁽¹⁹⁾
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Stoffes pro Zeiteinheit (18) (z. B. kg/h, m³/h)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
		bzw. max. Lagermenge (z. B. kg)		(waxiiiaiweit)

19.3	Trinkwasser	1.000 m³/a	
38	Maschinenöl	2 t/a	
22			

Stoffstrom Nr. gemäß	Bezeichnung des Stoffes / Gemisches	Menge des Stoffes pro	Zusammense	zung ⁽¹⁹⁾
Fließbild	bei Abfällen auch Ab- fallschlüssel ⁽¹⁷⁾	Zeiteinheit ⁽¹⁸⁾ (z. B. kg/h, m³/h) bzw. max. Lagermenge (z. B. kg)	Inhaltsstoffe	Anteil (z. B. Gew.%, mg/l) (Maximalwert)
21.3	Vordunatura			

21.3	Verdunstung	800 m³/a	
21.4	Abflutungswasser	200 m³/a	
30.2	Wärme aus WRG	300 MWh/a	
38a	Altöl ASN 13 02 05*	1 t/a	
39	Kälte		+
		-	
, , , , , , , , , , , , , , , , , , , ,			

Dieses Formular ist für jede Betriebseinheit auszufüllen.

- Betriebseinheit Nr.: 03.01
 Kennzeichnende Größen der Betriebseinheit oder der Anlagenteile der einzelnen Betriebseinheit (15):
 Flüssiggaslager (5,7 t)
- 2. Gehandhabte Stoffe auf der Einsatzseite ⁽¹⁶⁾: (Einsatzstoffe, Zusatzstoffe, Brennstoffe, Neben- und Zwischenprodukte, Abfälle)

Stoffstrom	Bezeichnung des	Menge des	Zusammenset	zung ⁽¹⁹⁾
Nr. gemäß Fließbild	Stoffes / Gemisches bei Abfällen auch Ab-	Stoffes pro Zeiteinheit (18)	Inhaltsstoffe	Anteil (z. B.
1 Holobild	fallschlüssel (17)	(z. B. kg/h, m³/h)		Gew.%, mg/l)
		bzw. max.		(Maximalwert)
		Lagermenge		
		(z. B. kg)		

31	Flüssiggas	30 MWh/a	
-			
- 10 10 to 1			
3,443,			

Stoffstrom Nr. gemäß Fließbild	Bezeichnung des Stoffes / Gemisches bei Abfällen auch Ab- fallschlüssel (17)	Menge des Stoffes pro Zeiteinheit ⁽¹⁸⁾ (z. B. kg/h, m³/h)	Zusammenset	Anteil (z. B. Gew.%, mg/l)
		bzw. max.		(Maximalwert)
		Lagermenge		
		(z. B. kg)		

31a	Flüssiggas	30 MWh/a	
-			
· · · · · · · · · · · · · · · · · · ·			